CAPITAL AREA TIMEX SINCLAIR USERS GROUP
\＄1．00 per copy
Please support your camputer
נסIП С．月．T．T．5．！

All the questions you had about
interfacing，but were afraid to ask （till the last meeting！

III THIS ISSUE

CORTRIBUNORS

Election Results．．．．．．．．．．．．．．．．．．．．ヨ Membership Carmer ．．．．．．．．．．．．．．．．．．．．
 Packet Radia on the Tsicua．－．．－．-4
 Hires Graphics on the Tsioun．．．．．．． 206日 Program Пates．．．．．．．．．．．．．．．．．．．． 9
ᄃRTS Suruey－．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．in
Easel Formblas．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 11

PRESIDENTIAL RAIIBLIMGS

It is sort of strange writing on the front cover of the newsletter，but I assume I＇ll get used to it．This month my message will be fairly sort for two reasons．First，I＇ve been travelling and the deadine sort of snuck up on me and，second，I want to meet with the Executive Board and read the results of the Survey．

The President＇s chair has，in the past，been occupied by the real ＂gurus＂in our group．As I＇ve said many times，I＇m not one of them but I will attempt to solve your problems by pointing you in the right direction if I don＇t know the answer．

In the next year，many of you will be asked to volunteer your talents for various group activities and， most of all，for the planning and execution of our computerfest next Spring．I hope you will give me the support that you＇ve given the previous presidents．Remember，this is your group and you will get out of it only what you put in．

I＇m really looking forward to serving you this year．

Bill

FTOM IIE EIITOR
Well, by the time you read this, the big 4th of July holiday will be over and we will have to work two months before Labor Day rolls around. I know many of you will be taking vacation this summer but please remember," "Your Editor is always on the job!" Unlike many newsletters, we do not suspend operations or print double issues during the summer. For this reason, I need your articles. As you can see, many of our usual writers are "still on vacation" but, thank goodness, others have stepped in to fill the breach.

New writers--and for that matter, the old ones, as well--should review the "Newsletter Submissions" box on this page. In order to keep up the high production standards and to help me cut down on the time it takes to prepare each issue, I need you help. If you are going to submit "hard copy", you should do the following:

1. Make sure the copy is as dark as possible. Use a new or nearly new ribbon, since the output from 9 pin printers in the draft mode is very difficult to reproduce unless it is dark. I sometimes try to enhance light printing by running it through the Xerox, but this is not always successful. If it looks light to you, it probably is unacceptable for paste up.
2. Please limit the column width to $31 / 2^{\prime \prime}$. If you are using 10 CPI (Pica), this is 35 characters; 12 CPI (Elite) column is 42 characters wide.
3. When you mail copy, please insure that the folds do not crease the text. Use cardboard inside the envelope for stiffness and protection and, for $81 / 2^{\prime \prime} \times 11^{\prime \prime}$ sheets, why not consider an envelope that size or a mailing tube?

If you have a QL, you can cut all this hassle by just sending me a _doc file on disk or microdrive. wrapped in foil to protect it.

I hope you enjoy this issue. TS $1000 / 1500$ users should take note of Wilf Rigter and Fred Nachbaur's article on hi-res graphics and Hank Dickson's packet radio summary. There are $2068 /$ spectrum programs and reviews. Harvey Taylor's "Playing With Electricity" article on digitizers is "must" reading for QL owners, Finally, look at the Membership Corner in the Potpourri section. This will be a new monthly feature to keep your membership listing up to date.

Well, got to get this issue to bed See you at the meeting.

JULY IIEETING
HGENDR
$11: 00$ Hordwore Workshop
$12: 00$ CYA Workshop
$2: 00$ to $2: 30$ Generod
Meeting
2:30 to $3: 30$ Hordwore
Interfocing
$3: 00$ to $4: 30$ Open discussion
$4: 30$ Adjoum

Submissions for the newsletter can be in hard copl, with 든ms 3 live inches wide or, preferably, magnetic media. Far the al , mirradriue cartridge, $51,4,05 \% 00$ or
 disks. For the 2w or 206日, cassettes anlys with titles an the bax.

Send material to:
Editar: CRTS Mewsletter日ax 46
Fairfay 5tation, UR 22aga

LONG GRUELING ELRETION OVIR

CYA WORKSHOP

The SElection Gr Gffidcers, Es RukLishé ith dhe duife 'BG TEWElEtter's METE
 TG Gftice in Emftention, zil were Elected

 SUCEES since the counim Hear appears te
 activities.

Membership Corner

Current Membership Rosters (as of $5 / 24 / 88$) were distributed at the June meeting. Send a large SASE for your copy. Each month we"ll list changes/additions so you can keep your copy up to date.

The first change is a new address \& 'phone number:

> Stephan Greene 2605 Stone Mountain Ct. Herndon, va 22070 $70 \leq / 430-9495$

Although this Foster contains 94 names, four are due to renew by the end of June. We still attract new members, but our record for renewals is not good. We need YOUR help in contacting those who have left our ranks. Let Bill Barnhart know of your offer of service!

A good "critical mass" of interested members met at the June meeting. The aim of the workshop is to put our computers to work on financial matters of interest to us. I proposed a primary objective to -Identify near-term and secular economic trends by monitoring and analysing selected economic indicators. The indicators are: Interest Rates (AAA Bonds and Federal Funds), Inflation (Producer Prices), Money Supply (M2 x Velocity), and GNP. The means and interpretation of these indicators to be as per the reference "Getting in on the Ground Floor" by Stephen Leeb, 1986. For July I hope we can agree on how to format, go about, and computerize sufficient data using Abacus and/or Easel and splitting up the tasks between us.

Time permitting, we can discuss two other potential objectives -- (1) To develop investing strategies of low risk with growth, while following secular guides and trends: (2) To develop guides for the selection and screening of investment grade securities, etc.

Once we get going, I expect the workshop will provide us hands-on experience in exchanging, modifying, and processing our data via the QL Abacus and Easel programs. And, portraying the info in compatible and comparable formats. See you all July 9, from 12-2 PM.

EDITAR'S MOTE: This is an new seminary in keeping with the group's desire to diuersify its workshop offerings. For those of you unable to attend the sessians, we will attempt to keep ygu abreast of the proceedings.
 MIRNEMDFE BE EIHAE TIFELL BLT

CATS VIEWS PACKET RADIO ON T/S 1000

BOB DIGGS (KV3Q) from North Eastern Maryland gave the June CATS meeting a first-time look at the intriguing field of data communications on the T/S 1000, using packet radio.

Hearing of CATS' continuing, unfulfilled passion for packet radio, Bob brought and set up a bundle of marvelous gear in the hardware meeting room that Saturday morning.

He connected a T/S 1000, an RS-232 interface, a conm-Link I converter, a Terminal A connector (instead of a modem), and a handi-talkie radio transmiter/receiver.

The corm-Link I, a black box about the size of a CD player, takes impulses from the RS-234 interface installed in the port behind the T/S 1000 and changes them into transmittable signals using ASCII code. The handi-talkie then puts the data on the air.

Before noon, Bob struck up a random conversation with an amateur radio user in Hyattsville who knew about CATS and some of its members. As time wore on, however, atmospheric conditions closed in and cut off the action for that day.

Bob's setup works with the $\mathrm{ZX}-81, \mathrm{~T} / \mathrm{S}$ 1000 and 1500. The QL can also be utilized, but it's more difficult than the 1000, he says.

For the future, Bob would like to do the demonstration with a stronger transmitter. CATS would like to provide him a large-screen projector so the group could see an interactive log being created during a packet radio session.

Keep watching (and listing to) this space!!

Please complete the survey on page 10.
Bring it with you to the meeting or mail it to the CATS post box.
letters io the diditer
Item for CATS Meeting on Unanswered questions:

My question is this. . .
I have:
A QL.
A Brother CE-50 daisy-wheel typewriter with a 9-pin computer port.

An interface (black box) made by Brother which accepts the 9-pin DIN plug used by the typewriter and has RS-232 parallel and serial plugs.

Given this, how do I make them all work together?
(P.S.: I can bring this monumental array of stuff to the July meeting for actual verification.)
C.H.D.

Dear Hank \{Dichsan\},
We"।l pass this alang to " Dr . Muintera" and maybe he can include this in the "Rstr Mannie" show at the July meeting. The Editar
If there are ony more hordware questions, let us know. Ne will pass them along to Morinile.

The C.A.T.S. tape library is
 members. Prices; per cassette, are 致. the meeting.

Mail arder requests, and submissians for publicatian, should be sent to the tape librarian:

Rew. Jahn Riley
120 ח: Fairlawn Dir.
Carralitan; GF $\exists 0117$
Checks ar money arders shauld be made aut to [. $\mathrm{A} . \mathrm{T} . \mathrm{S}$.

We will cantinue ta "campensate" cantributars with one free cassette from the library.

PLAYING HITH ELECTRICITY

by Harvey Taylor
In May/June/87 Byte magazine, Steve Ciarcia described a video digitizer project. After a good deal of hesitation. I decided to go with this system on my QL. The deciding factor in my mind was that I could use this system with any computer with a serial port. The digitizer itself is well described in those articles so I will only discuss the software I have written to drive the board.

Getting the Circuit Cellar Inc. digitizer to use with the QL meant that I had to write a software driver to control the board \& display the information received. To begin at the beginning, this turns out to be another case where one runs afoul of the cheap SERial ports on the QL. Specifically, the board transmits data at the North American norm of 8 data bits, no parity, 1 stop bit.

The problem which arises is that at high speed (read 9600 baud), the QL wants at least $11 / 2$ stop bits. This means that until I am able to modify the initialization sequence of the CCI board to use 2 stop bits, I must transfer data from the CCI board to the QL at a mere 2400 baud. A video field is digitized to 62464 bytes. At 2400 baud, it takes about 4 or 5 minutes to transmit the whole field. It only seems like forever.

The CCI board digitizes to 6 bits $[0$ -63]. While the QL displays at most 3 bits [0-7]. One of the first requirements then, was to define a method of Mapping the $0-63$ CCI range into the QL $0-7$ range. I wrote a function which takes either preset values (Linear, square \& Exponential) or User defined values and uses them as Limits to define the Mapping process. The colours which are used can be simply $0-7$ or set up any way one wishes.

Once you have the information in the computer, it is useful to be able to
analyze it. One of the primary methods which is used in the Image Processing world is with a special graph called a Histogram. This is a plotting of Pixel values [0-63 in this case] versus number of pixels. A quick look at this graph will tell you where the values of your screen are bunched.

The fun starts when once you have the information in the computer you can begin to modify it. There are a variety of mathematical filters described in the literature. (See the bibiography below.) Among these are Low \& High Pass, Laplace edge enhancement and median value filters. One might also wish to spread the Histogram out so that the full range of shades is used. This might look like a similar operation to choosing a narrow mapping, however once you have modified the data you can apply the other filters to the data in a way which only changing the mapping does not allow.

In all of these processes it is all too easy to generate garbage. One must try different techniques to see comes out. If the Black/White settings on the CCI board are set too clasely together, it is difficult to do much of anything with the narrow range of values produced.

The File SpStLogo.pic contains the raw data of the Space Station Logo, a spacesuited figure in the Leonardo universal man pose. This is a 244 X 256 array of data points $0-63$. There is a bit of garbage in the bottom couple lines.

Bibliography:
Steve Ciarcia - Byte Magazine, May/June/87
Image Processing - Byte Magazine Theme, March/87
Gregory Baxes - Digital Image Processing, Prentice-Hall, 1984 William Green - Digital Image Processing, Van Nostrand Reinhold, 1983
-santyjem jabuy jot
sweuboud to sannlyay hurw ytim wruboud zsity Ue noh

 punot wesbosd alt 'ssaumo pJeoq ajalunhi. to saqunu

-papaau ajam spow peusazul on ${ }^{\circ}$ suajuss 5 an
 hardware group in existence. The $2 x$ computer had

 or both. Until WR $\times 16$. also, somehow, always seemed out of reach, ignored, Se4tI 000015l/t8XZ att wo alq!ssod uaaq skemle

elljoy, and play with the demas.
For now, though, skip the se se 'ions and iust enter,
fully control your machine's videa.
The theory sections will help you learn to more varied, but there are some inevitable limitations. experimentation. The possibilities are many and There wILL be theory sections, for your information
later on, once you feel the urge to go beyond basic with those little TS1000's or TS1500's.
"play by doing" thing that let s you do neat things another of Fred 's incomprehensible but presumed
sensible high-tech ravings. Not at all. This is a another of Fred's incomprehensible but presumed But whoa! our esteemed Editor land probably most presented in this article. sautzos „intasn uana aqkew '6utizsasałul. ajdnoj F many others have made other discoveries. I worked up overcoming some previous hardware limitations.
Gregory C. Harder, W.C. McGrath, and undeubtedly
 refinements in high-res and other "cheap video". Mr. folke have been hard at work, developing new Since our publication of Wilf Rigter's WRx 16 highW. Figter with F. Nachbaur
Fros 2K-Rppeal, Umanduer 5UG, April, 15日B
WRx16 REVISITED!

RAM socket on the board, with seven small wires

 board. This popular device was sold into the

1: Modified Hunter board. See the Theory section Fortunately, you have several options.

The rest 15 "history." When we ran it over a year
more. "real work" with it, as communicate to BRSs and info
services. In the future, you will be able to do far
 small static memory board, is a small investment for
 reports in the Feb-Mar ' 88 issue that TS1500's with
TS2040 printer are available for as low as $\$ 30$ from

On that subject, the VSUG newsletter, $2 x$-Adpeal,
the machine. All at very low cost. exist, involving the use of a 1200 -baud modem for column window. New possibilities for modemming creation of a windowing 128 -line Editor routine, exploration for the 2×51-family. Some will allow the Here and now, there are yet more vistas in display interesing to see what they come up with. using this system. There are even programmers
working with this in the U.K. It should be
 we ran in SWN 4:1. What's more, programming for it
is comparatively simple. An Extended BA.SIC is suitable non-volatile 8 K static RAM, such as the one display using simple multi-purpose hardware; a WRxi6 is a system of high-resolution (256x192) NOLIdIUJS3a byte program and a small memory board, and it make
this computer once again a viable tool in a world of
IBMs, Ataris and others. The saga continues.... byte program and a small memory board, and it makes a resurgence of interest in the 2×81. One short $79-$ ago, we had no idea that this would stir as much of

THEORY
WFex 16 VI will not work if the $48-64 \mathrm{~K}$ block is fully decoded. This is because it relles on the high-
 ues am 'xty 47!'m 'saysen autinoa ayt 'cyts
 than the "actual" dummy display file in the $16-32 \mathrm{~K}$

 32K block either.
Hore precisely, only the last two bytes of the DDF need exist in high memory. To understand why, let's review how the line-scaming system works. On recervirng an interrupt, the main display locp is
started. After taking care of housekeeping fcounting
 the dummy display file. When an MI cycle 2x81) or A15 and A14 high (TSI5CO or 2×31 with

 during the refresh interval provided for dynamic RAME. This is why we have to AND REFSH* and RD* controliing the SRAM's chip select. IOn the Hunter board. for instance, cut the trace from RD to CE 4 ,

The final result on the data lines is then fed serially to the TV. Meanwhile, the CPU gets fed NOFs
$(00 \mathrm{~h})$ instead of the true contents of the
swriening. It promises new hardware advances in Mol te aiqesado apew aquej il voitnjosas hejdstp

Best of all, a've been saving this little tidbit all this time), your machine will be virtually always be repairatie. We're working on ways of building such "Super-ixs" onto a single board, contairing NO custom chips! ©f you don't believe that it's possible, leok at a 3×80 schematic! 50 even if your Timex ULA or SCLD goes out, your machine can still live on. You can afford to devote interest, tjme and money into a device that can greatly erhance your personal productivity. You don't have to wonder if your computer will still work next week. Now is: t that a pieasant thought in trying times?
WRx 16 VERSION 2

 still uxists on the new version; we can't do much
 switches out here, will woris in spite of the apparent conilict.

The othe restriction is that we had to take special

 you might lave up there.

WRa 16 Verion 1 does not work at all with certain hardware ombinations; e.g. the $T S 1500$ alone (without exernal 16 K pacho, and the Memotech 32 K pack alone. Both will work if a standard Timex 16 K .
or similar pek is added.

[^0]Mat ₹ yoot 'sał6ry trem Rq pautgas "auṭins mau aut more bytes tian the original routine. $l(f n)$ then did a little yyte-pynching to make it fit into the
 existing soflware, such as the utilities and demo
given with the original article.

- asinap suoth bitunmeos antsuadxaut

Yes, communications. I didn't say "computer" because that can be a scary word. [You REALLY have to be wary of people like me, who often refer to "the machine" in articles. I You can't use a computer if communicate with it. WRx 16 improves your vision by a factor of 16. The resolution is iust 25 good as the TS2068, in normal display mode, except without the poob hqpuoseas hue uo kpears-yjos pue jeats
 for color in a "serious" computer, its lack is
actually an advantage because of the resulting simplicity.

 almost twice as tast as before in SLOW mode), with
full software compadability. All at a cost of only a

 more significant possibilities for speed cand possible resolutions increase.

LET THE FUN BEGIN

In this first article of a possible series, we present a new Whxis core. This overcomes several published in SWN 4:2. This is a GOOD THING TO DO to your existing WRx 16 software, since it makes it usable with a greater range of hardware combinations. New programs should use this routine to prevent problems later.

I'll also demonstrate a couple interesting
alternatives, using demos that you'll find in the histings.

The goal is to mathe you want to uriderstand it all theory section and your ROM disassembly, etc. Don't be afraid to experiment. You will then be on the fore-front of a wave of development that may yet communications computer. This wave has already seen working prototypes of easy-to-use $25 \mathrm{o}^{\circ} \mathrm{K}$ bank-
 Eeware of some，like RirD，which appear to be great，
compact time－consumers，but may not do what you

 Finding suitable timing values with a minimum of

 ut dn nok ssam pinoj leyt buth liuo aبf znoqe st 反ututy aut＊K子artua st！ut autinos mau ant awos sanow stul＂pabuequ aq at pey spuewmos „Repap．
 opcode set． ax meets the requirement of having bit 6 of the memory echo is no longer requird．（Note also that JP
 line－scanning operation to the main program，instead
of a JP to a fix address．This way，there is no data Version 2 fixes this by using JP（ax to return the
 a6equeb puty kivo trem tr（hdaz kJowaw－mot ayt to running in high memory（PC has bit is high）．It the
RAM is fully de：oded，（i．e．no＂echo＂or duplicate

the command．
returns control to the CPU．The CPU then executes as in Wry 16 V1 all have this in commond This is a systemi FET ，used in quasi hi－res routines，and JP ©Commands like HALT，used in the normal disolay
 This process contirues until all 32 horizental bytes
frequency？！
clock crystal＇s frequency is twice the CPU clock 4 t－states，exactly the time it fakes to display 8 instruction being＂fetched．＂It therefore delays for

is in the background color（white or black，in
normal and inverse modes respectively）．

 The way we do it，is to toggle between twokifferent

to view arid play with the result．）

 our plotting，then get into compute－and－display mode

 quasaftp kepostp of（asa－z－łoh UT SNEき）Japuno
 WHAT IT DOES demo，using this modification of WRX16？ Well，what could be better than to repeat
 Fred Nachbaur，＂including a＂GreyPlot demo＂thayld back．．．．do you remember SWN Vol．1，kids？Thas

to purchase，thing（assuming that you＇re with us so
far on this hagh－res stuffi．

 We＇ll once again use bizarre methods to put that maketh．＂ runs，＂Three shades doth verily a grey－scale －black，white and grey．A quote I iust inverited $2 \times 81 / T 51000$ display a high－res scale of three shates grey－scale graphics．Thats right．Thoug ly me article gives a demo of a way to do high－resolution

to decipher． We all know，of course，that the daffy－nition of SI－
PLOT is＂the purchasing of a devious plan．＂Or any
number of other bizarre things，which I＇ll leave you

emtering the prggram

－uadjas auo uo smoj saj－mol／sas－？

 －saity heldstp omp joj pasn aq uej feut syjoic Mt

 is there．） （Topic for a future installment，if the interest We zan dc different things in different＂GUCN＂mode！ the number of hi－res and low－res lines at will． 3：WRx ló is extremely adaptable．We can change 12ε whenever it is called． togg？es all 32 locations（coiumns）between O and （desimal）．Our＂reverse＂（RVFS）routine simply To reverse a column，change the corresponding 2：Any or all vertical columns can be reversed． BASIC，using POKE． memory－mapped，allowing us write to it from plotting，etc．entremeiy compact the whole mini－ 1：Bit－mapped video file．This makes our features： This demo displays several of WRXI6＇s unique The demo reverse the video at any time． After the display has been created，you can view files；their product is printed in both． printed iust for demo purposes．Two different

CLASSIFIED ADS

Prices are Plus shipping Uerman Smith \｛ 703 \} $978-1835$

WANTKID

Uncle John Wants You！

HEPE＊S THE CHATILE TD CD SDMETHIMG FDP THE GRDUP

John Riley，our Tape Librarian， is trying to assemble a tape of Hstranamul programs．He meeds walunteeras？ta hey in same af the programs．Cantart him direc－ tly ar through the CRTS P． $\mathrm{A} . \mathrm{b}$ ．

 C．A．T．S．will run ane free 1,4 page＂rammercia！＂ad per ane year full \｛\＄1日\} membership. Mancommercial ads may be submitted at any time．Publicatian dates for both types will be deter－ mined by the newsletter editar．
䏚

Full page 蚁5；1／2 page ${ }^{(15 ;}$

EASEL FORMULAS

Some say the eighth wonder of the world is the power of compound interest．Its formula is $S=P(1+i)^{n}$ and represents what a sum（ S ）will result to if an amount（ P ）is invested at an interest（i） compounded over n years or periods． You can see what $\$ 1(P)$ will grow to on Easel by entering the formula： Sum＝1＊（1．06）${ }^{-}($cell $)$which gives the compound amount factor of $\$ 1$ at six percent（．06）over the number of years（ n ）that you have cells （columns）on your Easel screen．Try it for a series of interest rates and make a composite printout of the figures（curves）and you will have a handy monogram chart for future reference and use．

Also，you can do likewise to get a present－worth factor for a $\$ 1$ future sum，at six percent from the financial formula $P=S /(1.06)^{\circ}($ cell $)$ ． This shows the present vaule of $\$ 1$ in the future（ n years）assuming a six percent／year time value of money．


```
5 PRINT TAE 9: "NICOMACHUS"
10 LET A$="WHEN DIUIDEO EY *
20 LET E事"",ITS REMAINCER IE%"
SO FRINT" "THINK OF A NUMEEF"FF
DM-1 TO 100."
    40 PFINT A.$:3:E要:
    50 INFUT A
    70 PRINT F$;5; B系:
    80 INPUT 5
```



```
    110 INPUT E
    120 PRINT
    130 PRINT "LET ME THINK F MOMEM
440
    M40 LET Y=70*A+E1%5+15%C0
    160 LET Y=Y-105
    170 GOTO 150
    IOO PRINT "YOUR NUMBER WFE ":Y;
    RIGHT?(Y/N)"
    190 INPUT Q $
    210 IF COOE 0 $=62 THEN FFINT "H
OW FIBOUT THRT."
    E20 IF CODE Q & =51 THEN FRINT "I
    THINK YOU MISCALCULATED."
    230 PRINT "WANT TO TRY ANOTHER?
(Y/N)"
    240 INPUT D&
    345 CLS
    2 5 0 ~ I F ~ C O D E ~ D \$ = 6 2 ~ T H E N ~ R U N ~
    260 IF CODE D$=51 THEN PRINT "O
KAY, THANK YOU, GOODBYE."
```

－¢ ¢ 7 口	5E日T－日LE \｛EDL\} LロS」ad 7コe7uロコ
－รコบค円	
SYIOIITON	 Fa！
	Hフ！w」em ary！¢ Fiveqa」ココs
	faxp abiamg 7 Hap！sadd aコ！
Fijua un！idid	
－¢！pue s5u7 unw di Jat pang aue	P．IDOg OA！${ }^{\text {a }}$
101101 SmON	4ロ
puabas 3u7 Un wd DE：h af HH TL	
	Nong SuOs］
S8U!70N	IIPPUIS XOUI Bouv poiden oud

Fi｜eコ！7ewafne ave 547 பロu ： 547！

」ays ！\ddagger H래

 fiay abiang
 7 ～ㄹㄴ녈 1！！日

preog an！n＞ox＇

－S．リヨ7กロルロコ ル！

dnoug suasn

［ffr Revs leter
P．D，Box 467

FIRST CLASS MAIL

The next neetivo of CFFT yill be held ons

2：TO PM Penaral Reting

DVEE： 318 per yarar，per faily

[^0]:

